Вопрос 16 Параграф 13 ГДЗ Погорелов 7-9 класс (Геометрия)
Ниже вариант решения задания из учебника Погорелов 7 класс, Просвещение:
16. Докажите, что отношение длины окружности к её диаметру не зависит от окружности.
Доказать: отношение длины окружности к ее диаметру не зависит от
окружности, то есть одно и то же для любых окружностей;
Доказательство:
1) Возьмем две произвольные окружности, пусть R1 и R2-их радиусы,
а l1 и l2-их длины;
2) Допустим, что утверждение теоремы неверно и l1/(2R1)=/=l2/(2R2), например:
l1/(2R1) 3) Впишем в окружности многоугольники с большим числом сторон n; 4) Если число n очень велико, то длины окружностей будут очень мало отличаться от периметров p1 и p2 вписанных многоугольников, поэтому неравенство (*) не нарушится, если в нем заменить l1 на p1 и l2 на p2: p1/(2R1) 5) Радиусы описанных около правильных многоугольников окружностей зависят от длины их стороны, значит периметры правильных выпуклых n-угольников соотносятся как радиусы описанных окружностей: p1/p2 =R1/R2 , отсюда p1/R1 =p2/R2 ; 6) Это противоречит неравенству (**), значит наше допущение неверно и отношение длины окружности к ее диаметру не зависит от самой окружности, что и требовалось доказать.