Упр.743 ГДЗ Макарычев 7 класс (Алгебра)
Ниже вариант решения задания из учебника Макарычев, Миндюк 7 класс, Просвещение:
При делении натурального числа а на натуральное число b в частном получили с и в остатке d. Могут ли все числа а, b, с и d быть нечётными?
Используем утверждение о том, что для любого целого числа a и натурального b существует единственная пара целых чисел q и r, таких, что a=bq+r, где 0 Пусть a=bc+d – данное число. Если все числа a,b,c и d – нечётные, тогда произведение bc – нечётное, а сумма bc+d – чётная. Значит, a – чётное число. Соответственно, все числа a,b,c и d не могут быть нечётными.