Упр.203 ГДЗ Мерзляк Полонский 7 класс (Алгебра)

203. В некотором городе с любой станции метро можно проехать на любую другую станцию (возможно, с пересадками). Докажите, что существует станция, которую можно закрыть (без права проезда через неё), и при этом с любой из оставшихся станций можно будет проехать на любую другую.



Решение задачи: 203. В некотором городе с любой станции метро можно проехать на любую другую станцию (возможно, с пересадками). Докажите, что существует станция, которую можно закрыть (без права проезда через неё), и при этом с любой из оставшихся станций можно будет проехать на любую другую.Решение задачи: 203. В некотором городе с любой станции метро можно проехать на любую другую станцию (возможно, с пересадками). Докажите, что существует станция, которую можно закрыть (без права проезда через неё), и при этом с любой из оставшихся станций можно будет проехать на любую другую.

Ниже вариант решения задания из учебника Мерзляк, Полонская, Якир 7 класс, Вентана-Граф:

203. В некотором городе с любой станции метро можно проехать на любую другую станцию (возможно, с пересадками). Докажите, что существует станция, которую можно закрыть (без права проезда через неё), и при этом с любой из оставшихся станций можно будет проехать на любую другую.