Упр.6.30 ГДЗ Никольский Потапов 11 класс (Алгебра)


Решение

Ниже вариант решения задания из учебника Никольский, Потапов 11 класс, Просвещение:

6.30 Рассмотрим функцию у = х2 на отрезке [0; 1]. Разделим отрезок [0; 1] на n равных частей и в качестве интегральной суммы возьмем

Sn = f(0) + 1/n + f(1/n) *1/n + f(2/n) * 1/n + ... + f((n-1)/n) *1/n = (0^2 + (1/n)2 + (2/n)2 +... + ((n-1)/n)2) * 1/n = (1^2 + 2^2 + ... + (n-1)2)/n3.

а) Упростите формулу для вычисления Sn, пользуясь ранее доказанным равенством 1^2+ 2^2 + ... + n2 = (n(n+1)(2n+1))/6.

б) Существует ли предел интегральной суммы Sn при n —> +бесконечность? Если да, то чему он равен?

в) Чему равна площадь фигуры, ограниченной линиями у = х2, у = 0, х = 1?