Упр.2.101 ГДЗ Виленкин Жохов 6 класс Часть 1, Просвещение (Математика)
Ниже вариант решения задания из учебника Виленкин, Жохов, Чесноков 6 класс, Просвещение:
2.101. Найдите наименьшее общее кратное чисел:
а) 12 и 8; в) 108 и 132; д) 10, 15 и 30; ж) 6, 9 и 18;
б) 14 и 42; г) 90 и 315; е) 6, 8 и 12; з) 77, 91 и 143.
Наименьшим общим кратным (НОК) натуральных чисел a и b называют наименьшее натуральное число, которое кратно и a,и b (делится и на a,и на b).
Для того, чтобы найти наименьшее общее кратное (НОК) чисел, необходимо:
- разложить их на простые множители;
- выписать множители, входящие в разложение одного из чисел;
- добавить к ним недостающие множители из разложения второго числа;
- найти значение получившегося произведения.
а) 12 и 8
12=2•2•3
8=2•2•2
НОК(12;8)=2•2•3•2=4•6=24
б) 14 и 42
14=2•7
42=2•3•7
НОК(14;42)=2•7•3=7•6=42
в) 108 и 132
108=2•2•3•3•3
132=2•2•3•11
НОК(108;132)=2•2•3•3•3•11=44•27=1 188
г) 90 и 315
90=2•3•3•5
315=3•3•5•7
НОК(90;315)=2•3•3•5•7=90•7=630
д) 10, 15 и 30
10=2•5
15=3•5
30=2•3•5
НОК(10;15;30)=2•5•3=10•3=30
е) 6, 8 и 12
6=2•3
8=2•2•2
12=2•2•3
НОК(6;8;12)=2•3•2•2=6•4=24
ж) 6, 9 и 18
6=2•3
9=3•3
18=2•3•3
НОК(6;9;18)=2•3•3=2•9=18
з) 77, 91 и 143
77=7•11
91=7•13
143=11•13
НОК(77;91;143)=7•11•13=7•143=1001