Упражнение 362 ГДЗ Колягин Ткачёва 7 класс (Алгебра)

Пусть n, m, k - натуральные числа. Представить выражение в виде степени: 1) 4^n•4^5; 2) 3^8•3^n; 3) c^28•c^n; 4) a^n•a^13. Разложить на множители:



Решение задачи: Пусть n, m, k - натуральные числа. Представить выражение в виде степени: 1) 4^n•4^5; 2) 3^8•3^n; 3) c^28•c^n; 4) a^n•a^13. Разложить на множители:Решение задачи: Пусть n, m, k - натуральные числа. Представить выражение в виде степени: 1) 4^n•4^5; 2) 3^8•3^n; 3) c^28•c^n; 4) a^n•a^13. Разложить на множители:

Ниже вариант решения задания из учебника Колягин, Ткачёва, Фёдорова 7 класс, Просвещение:

Пусть n, m, k - натуральные числа. Представить выражение в виде степени:

1) 4^n•4^5;

2) 3^8•3^n;

3) c^28•c^n;

4) a^n•a^13.

Разложить на множители:

1) (a-b)^2-(a-c)^2;

2) (a+b)^2-(b+c)^2;

3) (2a+b)^2-(2b+a)^2;

4) (a+3b)^2-(3a+b)^2.